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We study the mean-field version of a model proposed by Leschhorn to describe
the depinning transition of interfaces in random media. We show that evolution
equations for the distribution of forces felt by the interface sites can be written
directly for an infinite system. For a flat distribution of random local forces the
value of the depinning threshold can be obtained exactly. In the case of parallel
dynamics (all unstable sites move simultaneously), due to the discrete character
of the interface heights allowed in the model, the motion of the center of mass is
non-uniform in time in the moving phase close to the threshold, and the mean
interface velocity vanishes with a square-root singularity.
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1. INTRODUCTION

The problem of how a deformable object moves through a heterogeneous
medium arises in many different contexts, as exemplified by the title of a
recent review of the subject: ‘‘Collective transport in random media: from
superconductors to earthquakes.’’ (1) The displacement of a domain wall in
a disordered ferromagnet, (2) of an interface between two fluids in a porous
medium (3, 4) or of the contact line of a fluid partially wetting a heteroge-
neous substrate, (5) may be viewed as examples of interfaces with different



elastic properties submitted to the competing effects of an external driving
force and of local random pinning forces. (1, 6–8)

A general feature of these systems is the existence of a depinning
threshold: below a well-defined external force Fc the interface does not
move (at zero temperature), due to the collective action of the pinning
centers, while for F > Fc it moves with a mean velocity v̄. Close to the
threshold this velocity has a singular behaviour, analogous to a critical
phenomenon:

v̄ ’ (F−Fc)h. (1)

Field theory methods such as the dynamic functional renormalization
group (6, 9–13) have been used to predict the dependence of h and other
critical exponents on the space dimensionality, the nature of the disorder
and the range of the interactions between parts of the interface. The
replica method has also been applied to the problem, indicating that typical
pinned interfaces have the same roughness properties as slowly moving
ones. (14)

Exact results, even for simple models of the depinning transition, have
not been obtained so far, and our goal is to show how a class of mean-field
models can be solved exactly.

We consider a model first introduced by Leschhorn, (15) where the
disorder is of the random force type and where space and time are discrete,
which appears to give a good qualitative description of that transition. (16, 17)

We first show that for the mean-field version of that model dynamical
equations can be written exactly in the thermodynamic limit for parallel
(i.e., synchronous) dynamics. From these equations of evolution the
threshold can be obtained explicitly for some distributions of the random
local forces. As an example we study the specific case of a flat distribution
and obtain the corresponding value of the threshold as the solution of
an algebraic equation. Numerical results are presented for the distance
travelled by the interface before stopping, in the pinned phase close to
threshold.

We next consider the motion of the interface in the moving phase and
find that the mean velocity vanishes as a power law (1), with an exponent
h=1/2. This value of h differs from the values found for models with
continuous space and continuous relaxational dynamics, for which the
mean-field behaviour depends on the form of the pinning potential. (9, 10) We
discuss the origin of this difference and relate it to the non-uniformity of
the motion very close to the threshold, which is usually not taken into
account in mean-field theories. This non-uniform motion is itself an effect
of the discreteness of the allowed heights for the interface.
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2. MODEL AND EVOLUTION EQUATIONS

2.1. The Leschhorn Models

Different models have been proposed to describe depinning pheno-
mena, with varying degrees of realism, but in view of the very general
nature of the problem, it is instructive to study its main qualitative features
on the simplest possible systems. In this spirit Leschhorn (15, 16) introduced
models discrete in both space and time, in which the interface evolves
according to very simple rules. These models are easier and faster to
simulate than more realistic continuous models and allow a detailed study
of the interface motion near the threshold.

As usual in such studies it is assumed that overhangs may be neglected
near the threshold, so a unique height zi(t) is associated with each site i
(1 [ i [N) of the discretized (d−1)-dimensional interface. By definition of
the model the total force fi on this site is the sum of the restoring force
from the other sites, of an external force Fext and of a random local force:

fi(t)=C
j
Ki, j[zj(t)−zi(t)]+Fext+ggi, zi , (2)

and at each time step the interface may move forward at site i only if fi is
positive, otherwise it does not move.

The interactions Ki, j in (2) are positive (or zero), so a site which lags
behind its neighbours experiences a positive restoring force and it will move
unless the pinning force on it is sufficiently negative. The coupling constant
g fixes the scale of the random force, while the gi, zi are uncorrelated
random numbers drawn from a given normalized distribution r(g), a new
random number being drawn only if the interface moves at site i (this is
what distinguishes pinning models from random growth models described
by similar equations, but where a new random number is drawn at each
time step).

As will be shown in the following, the time evolution is described by
relatively simple equations in the case where all sites experiencing a positive
force are updated simultaneously (parallel dynamics) and move by one
lattice unit, independently of the magnitude of that force. The equations of
motion then read

zi(t+1)=3zi(t)+1 if fi(t) > 0,
zi(t) if fi(t) [ 0.

(3)

As a consequence the instantaneous velocity of the center of mass is just
equal to the fraction of sites with a strictly positive force fi. Another
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interesting case considered in the literature is that of ‘‘extremal dyna-
mics,’’ (18–20) where at each time step only the site with the largest positive
value of fi moves.

Different interaction kernels Ki, j correspond to various physical situa-
tions: for an elastic interface Ki, j ] 0 only if i and j are neighbouring sites,
while in the contact line problem the interaction decays slowly with the dis-
tance (i−j). (21, 22) The model defined in (2) and (3) has been studied numeri-
cally by Leschhorn for nearest-neighbour interactions, in the case where g
can take two values, +1 and −1, with probabilities p and 1−p respecti-
vely. (16, 7) For d=2 (a 1-d interface moving in 2-d space), the results were
rather noisy and a large computing effort was needed to obtain an estimate
h=0.25±0.03. For d=3 the value obtained, h=0.64±0.02, is to be
compared with the prediction h=2/3 obtained by a first-order expansion
about the upper critical dimension, dc=5 for short-range interactions. (6)

Remarks. 1. A non-zero mean value of the distribution r(g) has
the same effect as an external force g OgP, so one can assume that Fext=0
without loss of generality. Note that, due to the asymmetry between posi-
tive and negative forces in (3), a transition exists even in the absence of an
external force and for r(g) symmetric (i.e., r(g)=r(−g) ). The calculations
below are carried out with Fext=0, for notational simplicity, except when
indicated.

2. The ‘‘no-passing’’ theorem holds: (23) if interface A is everywhere
ahead of interface B, i.e., zAi (t) \ zBi (t) for all i, then at all their contact
points fAi (t) \ fBi (t), so B cannot pass A on these sites. At the remaining
points B can at best catch up with A, since it moves only one lattice unit at
a time. As a consequence moving and static interfaces cannot coexist in the
same sample.

3. In the thermodynamic limit (NQ.), the interface moves forward
indefinitely for small values of g, and it is pinned for large values of g. In
that limit there exists a critical coupling gc, such that for g < gc the inter-
face moves with a non-zero mean velocity. The threshold gc plays the same
role as Fc in (1), and we are interested in what happens for g close to gc.

2.2. Mean-Field Evolution Equations

The mean-field theory (MFT in the following) is usually identified
with the infinite-range limit, where each interface site interacts equally with
all the others, (31, 3) i.e., the total force on site i is of the form

fi(t)=z̄(t)−zi(t)+ggi, zi , (4)
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where

z̄(t)=
1
N

C
N

i=1
zi(t) (5)

is the average instantaneous position of the interface.
This limit has also been studied numerically, (15) for the case where g can

take three values (1, 0, −1). It was found that the mean interface velocity
vanishes linearly at the depinning threshold, i.e., h=1, in agreement with the
mean-field prediction for models with discontinuous random forces. (6, 9)

We will show now that in this mean-field limit one can write exact
evolution equations for Pk(x, t), the fraction of sites at height k and
experiencing a local pinning force gx:

Pk(x, t)= lim
NQ.

3 1
N

C
N

i=1
dzi (t), k d(x−gi, zi )4 . (6)

It obviously satisfies the normalization condition

C
k
F
.

−.
Pk(x, t) dx=1. (7)

Note that we are considering directly quantities defined for the infinite
system, thus avoiding the difficulties associated with finite-size effects.

Let us consider the time t when the interface first reaches a given
height k. For the newly occupied sites at k, Pk(x, t) is just proportional to
r(x). At the next time step, for the parallel dynamics studied here, all the
sites with fi > 0 move one step forward, so Pk(x, t) gets truncated at
xg=(k−z̄(t))/g (Fig. 1). At the same time, among the interface sites
located at height (k−1), all those for which fi > 0 move forward, and new
random numbers are drawn for those sites, adding to Pk(x) a contribution
also proportional to r(x), for all x. This construction may be repeated for
the following time steps, showing that, for all heights k ahead of the region
initially occupied by the interface, Pk(x, t) consists of two parts, each of
them proportional to r(x).

More generally the evolution equations are

Pk(x, t+1)=˛Pk(x, t)+r(x) F
.

gk−1(t+1)
Pk−1(xŒ, t) dxŒ if x < gk(t+1),

r(x) F
.

gk−1(t+1)
Pk−1(xŒ, t) dxŒ if x > gk(t+1),

(8)
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Fig. 1. Probability distribution of the forces on the interface sites at height k, at time t
(when k is first occupied) and at time t+1.

where the discontinuity point varies linearly with k, according to

gk(t+1)=
k−z̄(t)

g
(9)

(to avoid the case x=gk(t+1) we assume that r(g) does not contain delta
peaks).

If initially Pk(x, t=0) has the form

Pk(x, t=0)=ckr(x), (10)

with ;k ck=1 (in particular if initially the interface is flat: ck=dk, 0), then
from (8) Pk(x, t) may be written as

Pk(x, t)=3
lk(t) r(x) if x < gk(t),
mk(t) r(x) if x > gk(t).

(11)

Due to this simple structure the evolution equations (8) can be expressed in
terms of the lk(t) and mk(t)

mk(t+1)=lk−1(t) F
gk−1(t)

gk−1(t+1)
r(x) dx+mk−1(t) F

.

gk−1(t)
r(x) dx, (12)

lk(t+1)=lk(t)+mk(t+1). (13)
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The initial conditions are

lk(0)=mk(0)=ck, (14)

and from (13) lk(t) is a non-decreasing function of time.
Both lk(t) and mk(t) have a simple physical interpretation. From (12),

mk(t+1) is the fraction of sites which jump from height k−1 to height k at
time t+1. Then it is clear from (13) that

lk(t)=lk(0)+C
t

tŒ=1
mk(tŒ), (15)

so lk(t) is just the total fraction of sites with a height \ k, if initially all
heights larger than k are empty (ckŒ=0 for kŒ > k).

2.3. A Recurrence Relation on the lk

The evolution equations can be written in a form involving only lk, by
calculating mk from (13) and using that expression in (12). One gets

lk(t+1)−lk−1(t) F
.

gk−1(t+1)
r(x) dx=lk(t)−lk−1(t−1) F

.

gk−1(t)
r(x) dx. (16)

The two sides of this equality correspond to the same quantity at two suc-
cessive times, so it is independent of time and equal to its value at t=0,
lk(0)(=ck). One obtains

lk(t+1)=ck+lk−1(t) F
.

gk−1(t+1)
r(x) dx, (17)

where we recall (see (9)) that gk satisfies

gk(t+1)=
k−z̄(t)

g
. (18)

For an interface initially flat and located at k=k0, lk is the fraction of
sites at heights \ k, so the average interface height is just given by

z̄(t)= C
k \ k0

k [lk(t)−lk+1(t)], (19)

=k0+ C
k > k0

lk(t). (20)
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For the more general initial conditions (14) this relation becomes

z̄(t)− z̄(0)=C
k
[lk(t)−ck]. (21)

The instantaneous velocity of the center of mass is thus given by

v(t)=z̄(t+1)− z̄(t)=C
k
[lk(t+1)−lk(t)], (22)

a form useful for numerical purposes when this velocity is very small.
Taking the lk(t) as basic variables, z̄(t) and gk(t+1) can be obtained

from (18) and (20) or (21). So, together with (17) and the initial conditions
(14), these equations constitute a dynamical system describing the average
evolution of an interface, in the thermodynamic limit. This system can be
used as such for numerical studies, with the advantage over conventional
Monte Carlo simulations that finite-size effects as well as numerical noise
are absent. This makes it possible to determine the threshold and to study
the critical properties with a much better accuracy.

Remarks. 1. For a deformable object like an interface the notion
of instantaneous velocity is not unique: For example one may consider the
velocity of the center of mass, or of the leading edge, and they are usually
different. In the present model the velocity of the leading edge fluctuates
strongly, being either 0 or 1, but close to the threshold the time interval
between two non-zero values increases. Of course, its time average is iden-
tical to the time average of the velocity of the center of mass and it
vanishes at the threshold.

2. Exact dynamical mean-field equations for an infinite system have
been obtained by Eissfeller and Opper (24) for spin glasses, but in their
approach the resulting equations still contain a noise term and have to be
solved by Monte Carlo simulations.

3. AN ANALYTICALLY SOLVABLE CASE

For some distributions r(g) of the local random forces, the integrals
that appear in (17) can be calculated easily, making it possible to push the
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analytical study further. As a simple example we treat the case of a flat
symmetric distribution:

r(g)=31/2 if−1 [ g [ 1,
0 otherwise

(23)

(any symmetric flat distribution may be reduced to (23) by rescaling the
coupling constant g). For simplicity we consider in the following only a flat
interface initially located at k=0.

3.1. Evolution Equations

Pk(x, t) is then just made up of two constant parts and is non-zero
only for a finite number of values of k, as only a finite number of the gk(t)
given by (18) lie in the interval (−1, 1) where r(g) is non-zero.

Consider first the leading occupied edge: it stays at k=kmax(t) if the
total force (4) on each of its sites is [ 0, i.e., if kmax(t)− z̄(t) \ g. If not, it
moves to kmax(t)+1, so one has the bounds

z̄(t)+g+1 > kmax(t+1) \ z̄(t)+g. (24)

As for the trailing edge, its position kmin(t) remains fixed as long as its most
strongly pinned sites experience a non-positive total force, i.e., if z̄(t) [
kmin(t)+g. It moves to k=kmin(t)+1 if on all its sites fi > 0. These two
conditions imply that

z̄(t)−g+1 > kmin(t+1) \ z̄(t)−g, (25)

and combining (24) and (25) one obtains bounds on the interface width:

2g+1 \ kmax −kmin \ 2g−1. (26)

The evolution equations (17) become

lk+1(t+1)=˛lk(t)
1−gk(t+1)

2
if |gk(t+1)| [ 1,

0 if gk(t+1) \ 1,

lk(t) if gk(t+1) [ −1,

(27)
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with l0(t) — 1 and z̄(t=0)=0 as boundary conditions. The position of the
leading edge is such that lk(t)=0 for k > kmax(t), and the position kmin(t)
of the trailing edge is the largest value of k such that lk(t)=1 (remember
that lk is the fraction of sites at heights larger or equal to k). The average
interface position, Eq. (20), may then be expressed as

z̄(t)=kmin(t)+ C
k > kmin(t)

lk(t), (28)

a form that will be useful in the following.

3.2. Determination of the Depinning Threshold

In order to find the threshold gc we note that very close to it, in the
moving phase, the interface velocity is very small (if the transition is con-
tinuous, as found numerically), implying from (22) that lk(t+1) 4 lk(t) for
all k. One is therefore close to a fixed point of (18), (20) and (27). But if a
fixed point exists for a given value of the coupling g, there is a non-moving
solution of the evolution equations and according to the no-passing
theorem this is incompatible with the assumption that the system is in the
moving phase. This shows that the threshold gc corresponds to the
appearance of a fixed point when g is increased: For g < gc, there is no
fixed point and the interface moves indefinitely; for g > gc, there is a fixed
point and the interface comes to a halt.

3.2.1. Self-Consistent Equations for the Halted Interfaces

The halted solutions of the evolution equations satisfy the following
self-consistent system:

gk=
k−z*
g

, (29)

lk+1=lk
1−gk
2

for |gk | [ 1, (30)

z*=kmin+ C
k > kmin

lk, (31)

with

lk=1 for k [ kmin, lk=0 for k \ z*+g+1. (32)
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In these equations z* and kmin denote respectively the positions of the
center of mass and of the trailing edge of a halted interface, whose distri-
bution of local forces (11) is given by the lk and gk, with mk=0.

Noting that (30) may be written

lk−lk+1=lk
1+gk
2

, (33)

and using (19) to reexpress z*, one checks easily that a solution of the
above system verifies both the normalization and the self-consistency con-
ditions, which here are simply

C
k
F
.

−.
Pk(x, t) dx= C

k \ kmin

lk
1+gk
2

=1, (34)

C
k
F
.

−.
kPk(x, t) dx= C

k \ kmin

klk
1+gk
2

=z*. (35)

Other stationary solutions verifying these two conditions but not (30) exist,
but they would correspond to other initial conditions and cannot be
reached starting from a flat interface.

3.2.2. The Threshold

In order to find the halted solutions explicitly, we first note that they
are invariant by a translation through an integer number of lattice units, so
we can fix kmin=0 for simplicity. In addition, the system (29)–(31) can be
reduced to an equation for the single variable z*, as the gk may be obtained
from z* using (29), then the lk from (30) and l0=1. Reinjecting these
values into (31) yields a self-consistent equation for z*. The precise form of
this equation depends on the width of the halted interface, for which only
the bounds (26) are known. A search for solutions can be made for the
different possible values of the width, but the effort can be reduced using
hints obtained from numerical studies. These indicate that the threshold
is very close to g=2.38, and that the width of the halted interface is
(kmax −kmin)=5.

Introducing for convenience the variables

y=(1−g0)/2 and u=1/2g, (36)
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equation (29) may be written

(1−gk)/2=y−ku, (37)

and from (30) and (31) the self-consistency conditions for a halted interface
of width 5 read

z*=g(2y−1)=C
5

k=1
lk, (38)

where the lk, considered as functions of y and u, are polynomials of degree
k in y, defined by

l1=y, lk+1=(y−ku) lk. (39)

Equation (38) finally reduces to a polynomial equation of degree 5 in y:

Rg(y)=g+y[1−2g−u+2u2−6u3+24u4]+y2[1−3u+11u2−50u3]

+y3[1−6u+35u2]+y4[1−10u]+y5=0. (40)

All the lk have to be positive, so acceptable solutions lie in the range
2/g < y < 1. They exist only if g \ gc , the value of g for which Rg(y)
admits a double root in that range, which we identify with the depinning
threshold.

Determining if a polynomial has a double root is a standard problem
in algebra (25) and it may be done very accurately. One obtains

gc=2.38006232... (41)

The other parameters of the critical halted interface are

g0=−0.7990787..., l1=yc=0.89953936..., z*=1.901857... (42)

Its density profile is given by the differences (lk−lk+1), which may be
deduced from these values using (29) and (30).

Remark. The value of the threshold does not depend on the partic-
ular dynamical rules chosen, as long as only unit jumps are allowed and the
stopping rule is fi [ 0. To see this, let us show that a weaker form of the
no-passing theorem holds for interfaces with different dynamics. Consider
an interface pinned under parallel dynamics: this implies that on all its sites
the force fi [ 0, so it would also be pinned under extremal dynamics. More
generally an interface moving under extremal dynamics cannot pass one
under parallel dynamics. The converse is not true, but a parallel interface B
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cannot pass a pinned extremal one A, since at all their contact points
fBi [ fAi [ 0. This suffices to show that the nature of the phase for a given
value of g is the same for both types of dynamics, though some aspects of
the critical behaviour might depend on the dynamics considered. (26, 27)

3.2.3. Effect of an External Force

The case of a non-zero external force can be treated along similar
lines. The final result is that the threshold now depends on Fext and is given
by the value of g for which the equation

Rg(y)+Fext=0, (43)

has a double root. The expression (40) of Rg(y) may change when Fext

varies, as it depends on the width of the critical interface, which in turn
may depend on Fext. For small Fext, however, we expect the width to remain
the same (= 5) and since at the threshold for zero external force

Rgc (0)(yc)=“Rgc (0)(y)/“y|y=yc=0, (44)

one obtains by expanding (43) a linear dependence of gc on Fext :

gc(Fext)−gc(0) 4 −
Fext

(“Rg/“g)g
4 2.3901... Fext , (45)

where the star symbol denotes a quantity taken at the threshold for
Fext=0.

3.3. Stopping Distance in the Pinned Phase

Armed with these exact results, we can now study in detail the beha-
viour of (18), (27) and (28) in the immediate vicinity of the threshold.

Figure 2 displays numerical results for the distance zf(g) at which the
center of mass of an interface initially located at k=0 stops, in the pinned
phase just above gc. When gQ gc, the data are well fitted by

zf(g) 4 z*−c`g−gc , (46)
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Fig. 2. Measured stopping distance zf(g) for an interface initially flat at position z=0, in
the pinned phase, for a uniform distribution of random local forces. The filled diamond
indicates the exact values (z*, gc) obtained in (41) and (42).

where z* is the value (42) obtained for the critical interface (this should be
expected since at gc there exists only one stationary solution with kmin=0).

It is also interesting to study the way the interface slows down before
stopping. The numerical results show that its velocity vanishes linearly as a
function of z̄(t):

v(t) 4 a(zf(g)− z̄(t)). (47)

When v(t) is very small it may be replaced by its continuous approximation
dz̄/dt, and integration of (47) yields an exponential convergence at large
times:

z̄(t) 4 zf(g)−cŒe−at. (48)

The factor a in (47) depends on g, it vanishes when gQ gc and right at
threshold convergence is found to be much slower. Figure 3 shows [v(t)]1/2

versus z̄(t) at g=gc. The data are well fitted by

v(t) 4 b(z*− z̄(t))2, (49)

from which one obtains that asymptotically

z̄(t) 4 z*−1/bt. (50)
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Fig. 3. Instantaneous velocity of the center of mass vs its position, at the depinning threshold
(gc=2.3800623...).

As will be argued in the next section and developed in the Appendix, these
results can be simply understood in the framework of a standard saddle-
node bifurcation for dynamical systems.

3.4. Moving Phase: Numerical Results and Heuristic Arguments

3.4.1. Numerical Results

In the moving phase, when the coupling g increases starting from low
values, one observes numerically that, for g < gc−0.02, the mean velocity
first decreases linearly with g. But this behaviour changes closer to the
threshold (Fig. 4). Very close to the threshold the time dependence of v(t),
the instantaneous velocity of the center of mass, also becomes non-
uniform: most of the time the interface creeps very slowly, with sudden
bursts during which it moves much more rapidly. The motion looks perio-
dic (Fig. 5), with a spatial period of one lattice unit. The minimum velocity
of the center of mass vanishes linearly with (gc−g) up to the threshold, but
its mean velocity, measured over a time sufficiently long to cover several
lattice units, decreases like (gc−g)1/2 (Fig. 6). This behaviour would be
difficult to observe in a Monte Carlo study of the model defined by (3) and
(4), due to finite size effects and to the increasing period. In particular,
stopping the simulations after a fixed number of time steps, independently
of the distance to gc, would give incorrect results.
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Fig. 4. Average interface velocity vs g, in the moving phase.

3.4.2. A Saddle-Node Bifurcation

In Fig. 5 we have seen that most of the time the interface velocity is
close to its minimum. Its profile differs then little from the critical one
obtained above.

Fig. 5. Instantaneous interface velocity vs average position, at g=2.378, very close to the
threshold.
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The situation is reminiscent of the one encountered in simple models à
la Pomeau–Manneville of intermittency. (28) These consider mappings of the
form

X(t+1)=Fg(X(t)), (51)

and describe the laminar-to-intermittent transition as a saddle-node bifur-
cation, i.e., the merging of two fixed points of (51) into a double fixed
point X*, at the critical value of the control parameter. In the intermittent
phase no fixed point exists, the system spends most of its time in a near-
critical laminar regime, where X(t) 4X*, with short turbulent bursts
during which X(t) varies rapidly.

It is shown in the Appendix that close to threshold the present system
may indeed be cast in a form similar to (51): the instantaneous velocity
may be expressed to leading orders as a function of the average position
z̄(t) only. It can be expanded around a minimum as

v(t)=vmin+C(z̄(t)−zmin)2+·· · , (52)

where the minimum velocity vmin is given to leading order by

vmin=A(gc−g)+· · · , (53)

zmin is a position for which the minimum velocity is reached and the con-
stants A and C can be calculated explicitly (see the Appendix).

The mean velocity v̄ may be obtained by integrating (52) over half the
period T, assuming that the region of high velocity makes a negligible con-
tribution to the total transit time. One has

T
2
=F

zmin+1/2

zmin

dz
v(t)

4 F
zmin+1/2

zmin

dz
vmin+C(z−zmin)2

. (54)

Hence, for vmin ° 1:

v̄=1/T 4 (Cvmin)1/2/p (55)

v̄ 4
`AC

p
(gc−g)1/2, (56)
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Fig. 6. Mean interface velocity and minimum instantaneous velocity, close to the threshold
in the moving phase.

in agreement with the numerically observed behaviour and yielding the
exponent of the mean velocity in (1)

h=1/2. (57)

4. DISCUSSION AND CONCLUSION

We now discuss the result obtained here for the depinning exponent of
the infinite-range Leschhorn model and its relation with other systems. The
value h=1/2 is the same as for a contact line on a smooth substrate
periodically modulated in the direction of motion, (29, 30) so the picture which
emerges from our results is that very close to threshold the interface
dynamics reduces to the motion of the center of mass in a smooth effective
washboard-type periodic potential close to the critical tilt angle.

It differs however from the value h=1 usually quoted in the literature
for the depinning exponent at the upper critical dimension, (6, 8) and it is
natural to ask what features of the model may explain this difference.

For models with continuous space and continuous relaxational
dynamics the mean-field behaviour depends on the analytic properties of
the pinning potential (9, 10)—for potentials with random cusps (correspond-
ing to discontinuous random forces such as assumed in the Leschhorn
model) the value of the critical exponent is found to be h=1. Close to the
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upper critical dimension the RG analysis indicates that under coarse grain-
ing cusp singularities are dynamically generated in the pinning potential,
even if they were absent initially, (6, 13) so this case of cusped potentials is the
natural starting point for an E-expansion.

The origin of the difference with the exact result obtained here may be
traced back to a basic assumption usually made in the mean-field theories
which is not fulfilled here—namely that in the moving phase the instanta-
neous velocity v(t) may be replaced in the equations of motion by its mean
value over time, which can then be determined as the solution of a self-
consistency equation. This assumption was first introduced in the study of
the depinning of charge-density waves, (31) it amounts to saying that there is
no qualitative difference between a situation where the interface is driven at
constant velocity and one where it is submitted to a constant external force.
The physical idea is that the fluctuations should average out for a very
large system, and it is generally accepted that non-uniformity effects are
irrelevant for the critical mean-field behaviour.

On the contrary, in the model studied here, the instantaneous velocity
remains strongly non-uniform in the thermodynamic limit (see Fig. 5), and
the mean and the minimum velocity vanish with different exponents. As
shown by the periodicity of the motion, this is related to the discreteness of
the allowed positions for the interface, through the constraint of unit
moves. In other words a periodic modulation of the potential in which the
interface moves may be a relevant perturbation, in the RG sense. This is
physically reasonable, as above the upper critical dimension an interface
remains flat (6) (in the sense that its mean square width does not diverge
with its size), so it cannot effectively average out the underlying periodic
potential.

This situation is reminiscent of the pinning of interfaces by the lattice
potential in crystalline materials, first studied by Cahn long ago. (32) The
assumption of discrete jumps is relevant to various experimental situations
where the pinning defects are well separated for instance in dilute magnetic
materials or in the motion of contact lines on controlled heterogeneous
substrates, (33, 34) so the properties of that class of models are interesting in
their own. The simultaneous effects of disorder and crystal-lattice pinning
on the static roughening of elastic manifolds have been studied by several
authors (see refs. 35–38 and references therein).

For a different model, aimed at describing the motion of visco-elastic
interfaces, Marchetti et al. (39) have also observed (numerically) that in the
infinite-range limit the velocity fluctuations do not vanish for large system
sizes. This came as a surprise, which they attributed to an instability of the
constant-v solution in the thermodynamic limit. It is striking that their
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system shares this type of behaviour with our model, suggesting that the
non-uniformity of the velocity may be more general.

APPENDIX: DERIVATION OF (52) AND (53)

An expansion of the form (52) for the instantaneous velocity v(t) close
to the threshold would follow along well-known lines if the evolution
equations could be put under the form of a one-variable relation

z̄(t+1)=Fg(z̄(t)), (58)

such that the equation z=Fg(z) admits a double root for g=gc. The
situation would be similar to the Pomeau–Manneville theory of intermit-
tency, (28) in which the transition is described as the merging of two fixed
points, a stable and an unstable one, which then disappear when the
control parameter g is varied. We show here that for the uniform disorder
distribution studied in Section 3, close to the threshold, the equations of
motion (17), (18) and (20) can indeed be cast in a form analogous to (58).

Let us consider the time evolution when the instantaneous velocity is
very small, so that kmin(t) and the interface width may be assumed to remain
constant during a large number of consecutive time steps. Equations (27) and
(28) can then be combined in a relation giving the present interface average
position from its values at the 5 previous time steps. Using the notations

y(t)=y0=
1
2
11−kmin −z̄(t)

g
2 , yj=

1
2
11−kmin −z̄(t−j)

g
2 , (59)

for j=1 to 5, one gets

g(2y0−1)=y1+y2(y1−u)+y3(y2−u)(y1−2u)

+· · ·+y5(y4−u) · · · (y1−4u), (60)

where u=1/2g. This relation is a five-dimensional dynamical system for
y(t), it is the time-dependent counterpart of (38) and is linear with respect
to each of the yj. It is exact in the pinned phase near the stopping point. In
the moving phase it is valid locally, close to a velocity minimum, and
remains valid as long as kmin does not change and the width of the interface
remains equal to 5.
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Since v(t) and its derivatives are assumed to be very small, we may
approximate the interface displacements in (60) by

yj(t)−y(t)=−
j
2g

v(t)+
j(j−1)

4g
dv
dt
+· · · , (61)

where the neglected terms depend on higher-order derivatives of v(t). In the
pinned phase (g > gc), (60) admits a fixed point where yj — yc(g), corre-
sponding to the halted interface. Expanding (60) to first order in the small
quantities v(t) and [yc(g)−y(t)], we obtain a linear relation of the form
(47), where the proportionality coefficient vanishes for g=gc, as expected
from the numerical results in Section 3.

In the moving phase (60) has no fixed point and we have to expand it
around the current value of y(t) (note that as we consider the vicinity of a
minimum of v(t), this insures that dv(t)/d(t)° v(t)). Regrouping the
terms independent of v and those linear in v, (60) becomes

Rg(y) 4
v(t)
2g

Qg(y), (62)

where Rg(y) is the polynomial appearing in the study of static solutions
and is given by Eq. (40). Qg(y) is a polynomial of degree 4 in y, which may
be expressed as

Qg(y)=1+y(y−u) 1 2
y
+

1
y−u
2+y(y−u)(y−2u) 1 3

y
+

2
y−u

+
1

y−2u
2

+·· ·+y(y−u) · · · (y−4u) 1 5
y
+

4
y−u

+· · ·+
1

y−4u
2 . (63)

Using the definition of y (59), relation (62) may be cast in the canonical
form (58), justifying the claim made in Section 3.

Using the fact that Rg(y) has a double root for g=gc, i.e.,

Rgc (yc)=“Rgc (y)/“y|y=yc=0, (64)

the leading terms in the expansion of Rg(y) near the threshold, in the range
where y−yc 4 (g−gc)1/2, read

Rg(y)=1
“Rg
“g
2g (g−gc)+

1
2
1“2Rg
“y2
2g (y−yc)2+·· · , (65)
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where for shortness yc=yc(gc) and the star symbol denotes quantities
evaluated at the threshold.

Let z̄c denote the average position of a halted critical interface such
that its trailing edge coincides with kmin(t). Then y−yc=(z̄− z̄c)/2g, and
from (62) and (65) the leading terms in the expansion of v(t) are of the
form

v(t)=A(gc−g)+C(z̄(t)− z̄c)2+·· · (66)

The numerical values of the coefficients are

A=−(“Rg/“g)g
2gc
Qg=0.273786... (67)

C=(“2Rg/“y2)g
1

4gcQg=0.167239... (68)

where Qg=Qgc (yc)=7.27519... . Equation (66) can be cast in the desired
form (52), with the minimum velocity given by

vmin=A(gc−g)+· · · (69)

as announced in (53). Finally, from (56), the critical behaviour of the mean
velocity is

v̄ 4
`AC

p
(gc−g)1/2 4 0.06811... (gc−g)1/2, (70)

in good agreement with a numerical study very close to threshold.
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